我国风力发电发展状况
我国的并网风电发展从上世纪80年代起步,“十五”期间,风电发展提速,2006年加速发展,总装机容量从2005年的126万千瓦增长到2008年的1200万千瓦,年增长率超过100%。风电装机容量在2004年位居世界第1O,到2008年底上升为世界第4位。 2009年上半年我国风力发电达到126亿千瓦时,占同期全国发电量约百分之一,而目前我国已成为亚洲第一风能利用大国。另外,截至2009年6月底,全国风电并网装机1181万千瓦,同比增长101%。目前国内有1230万千瓦风电项目批复在建。中国最大风电企业龙源电力集团公司风电装机容量突破300万千瓦。这一风电装机规模,在风电企业中位居亚洲第一、世界第五。
风电特许权项目是促进我国风电规模化国产化发展的重要因素。从2003年开始,国家连续组织5期风电特许权项目,以上网电价和设备的本地化率为条件,通过招标选择投资者。5期共计49个项目项目,确定了880万千瓦建设规模,同时有效地降低了风电的上网电价,促进了风电投资多元化,提高了风电装备国产化和本地化的能力和活力。
2009年8月8日,甘肃酒泉。 千万千瓦级风力发电站一期工程开工仪式隆重举行,国家能源局局长张国宝在仪式上表示,酒泉风电基地是中国规划建设的第一座千万千瓦级风电示范基地,已核准建设规模500万千瓦。同时,该风力发电站也是世界上首座千万千瓦级风电基地。
该风电基地预计将于2010年底投入运营。至此,中国已确定了河北、内蒙古、甘肃、江苏、吉林等地的千万千瓦风电基地,内蒙古东部、西部地区合计规划总装机容量突破5000万千瓦,河北、甘肃等地的规划总装机容量也都已达到1000万千瓦。
从2007年和2008年的发展形势判断,2010年可望达到3000万千瓦,2020年实现装机容量1亿千瓦的目标前景良好。风电发展的长期目标是,经过10—15年的准备,大约在2020年前后,使得风电能够与其他常规能源发电技术相竞争,成为火电、水电之后的第三大常规发电电源,至少达到装机容量8000万千瓦,积极创造条件实现1亿千瓦,占届时发电装机容量的1O%。2040年或2050年实现5亿乃至10亿千瓦,在届时的发电装机和发电量中占据20%以上。为了实现这一战略目标,需要利用5—10年的时间,在2010至2015年期间,建立起具有国际竞争力的风电产业体系,为实现长期目标奠定技术、产业和人才基础。
目前,我国已经掌握单机容量750kW以下大型风力发电设备的制造技术,2007年自主研发的直驱和引进技术消化吸收研制的1.5兆瓦风电机组已经投入试运行,1.5兆瓦风电机组开始规模化批量生产,2兆瓦级及以上的风电机组正进入研制阶段并开始试运行。在国家风电设备国产化政策的有力推动下,风电设备零部件制造水平也有了较大提高,具备了齿轮箱、叶片、电机等关键零部件制造能力,外商已开始在我国采购风电设备零部件。2008年在风电新增市场份额中,国内产品占65%左右,比2005年提高了近30个百分点,国外产品占35%;在累计市场份额中,国内企业55%,国外企业占45%。此外,我国已经建成了250多个风电场,掌握了风电场运行管理的技术和经验,培养和锻炼了一批风电设计和施工的技术人才,并积极推动风力发电技术实验平台和人才培养机制的建设,为风电的大规模开发和利用奠定了良好的基础。总之,我国的并网风电已经开始进入规模化发展阶段。
离网型小风电也是我国风电发展的重要方面,我国已经形成了世界上最大的小风机产业和市场,到2008年,已经推广了约38万台小型风机(总容量约7.5万kW)用于边远地区居民用电,估计目前有约30万台小风机在运行。我国已经形成了单个系统容量从100W到10kW的系列成熟的小风机产品,在2008年生产的50000多台小风机中,有20000多台出口到世界30多个国家和地区,创造了很好的经济和社会效益。
6。 风能发电政策
国家发改委近日发布《关于完善风力发电上网电价政策的通知》,规定按风能资源状况和工程建设条件,将全国分为四类风能资源区,相应制定风电标杆上网电价。四类资源区风电标杆电价水平分别为每千瓦时元、元、元和元。
目前风电场的建设投资基本在每千瓦8000…10000元,按照30%的自有资金投资,以等效满负荷利用小时数1800小时测算,5万千瓦风电场度电成本为元/千瓦时,这一成本已经低于标杆电价。
对投资商而言,没有了低电价的恶性竞争,今后投标人的风电机组本地化方案、技术方案、投标人融资能力及项目财务方案成为决定因素。
对于风电设备商而言,在投资商收入既定的基础上,控制投资成本成为盈利提升的关键,设备商产品价格与质量的竞争将更为激烈。风电场的总投资中有60%是设备投资,因此未来成本的控制主要将在于设备采购成本的控制及维护费用的控制。随着技术的进步、行业竞争激烈,长期来看整机价格下降是必然的。
对于电网公司而言,补贴机制明确,电网并入风电的积极性依然存在。风电上网电价高出当地燃煤机组标杆上网电价的部分,通过全国征收的可再生能源电价附加分摊解决。目前可再生能源附加电价余额为2厘钱/度电,按照2008年全国发电量34334亿度电来计算,2008年提取的可再生能源发展专项资金约为68亿元,考虑其中50%用于风电补贴,每度风电补贴元,则可以补贴170亿度并网风电,而2008年风电并网发电量为128亿度,补贴资金完全可以覆盖。因此我们认为,购电成本问题已经不是电网公司进行风电并网的担忧,可再生能源接入电网的技术问题的解决才是关键,考虑到国家政策的不断推动,这一问题将会逐步解决。
中国风力发电所面临的第一座“挡风墙”可能便是不堪重负的电网。
“在当前的电网状况下,一旦千万千瓦的风电场齐发电,当地电网将立即瘫痪。”张秀芝告诉《科学新闻》,中国风能资源丰富的地区主要分布在“三北”(西北、东北、华北)地区和东南沿海。而“三北”地域广漠,适合于发展大型风电场,目前在“三北”规划了6个千万千瓦风电基地,但这些地方又是电网最弱的地区,因此中国风力发电将面临着电网不堪重负的问题。“在欧洲几个国家的电网是联网的,他们有较完善的风电量预测,风力发电很容易被消纳,并且他们没有这样大的风电场,所以在这个问题上没有经验可借鉴。合理规划、精心设计、电网跟进、风电量预测将是大型风电场开发的关注点和研发链,值得我们投入。而东部沿海是我国经济发达地区,电力负荷集中,能源资源相对贫乏,需要外电送入,因此开发近海风电列入了国家风电开发的日程。” 。。
第四节 核能
第四节 核能
与水电一样,核电是安全、环保、经济的清洁能源,是目前现实有效、可大规模替代化石燃料的优质能源。在国际社会越来越重视全球气候变化、减少温室效应气体排放的形势和压力下,积极推进核电建设,已是我国能源建设的一项重要政策,对于满足我国经济和社会发展不断增长的能源需求,保障能源安全供应,保护环境,实现电力工业结构优化和可持续发展,提升我国综合经济实力、工业技术水平和国际地位,都具有十分重要意义。经过30多年的发展和积累,我国核电成绩喜人,具备了大规模发展的条件。
1、核能发电原理
1939年,德国科学家奥托&;#8226;哈恩发现了元素铀的同位素235U原子核在中子的轰击下可以发生核裂变并同时放出能量,很多重核同位素,如233U、239Pu等,都能产生核裂变反应。而核裂变反应放出的能量比化学反应大的多,这预示了核能利用的前景。
235U原子核在裂变后生成裂变碎片并同时放出2~3个中子,如果新产生的中子能够轰击其它的235U原子核并导致新的核裂变,裂变反应就可以不断持续下去,我们将这个过程形象地称作“链式反应”。在不断的链式反应下,核能被源源不断地释放出来。
除了235U等裂变可以放出核能外,氢的同位素,如氚(3H)的原子核在一定条件下也可以聚合成氦(He)原子核,同时放出能量,这也是核能的一种形式。我们通常将核裂变反应放出的核能称为“裂变能”,而核聚变反应放出的核能称为“聚变能”。
中子与铀一235核的自持链式反应可以由人来控制。目前最常用的控制方式是向产生链式反应的裂变物质(如铀一235)中放入或移出可以吸收中子的材料。正常工作时使裂变物质处于临界状态,维持稳定的链式裂变反应,因而保持稳定的核能释放。如需停止链式反应,就放入更多的吸收中子材料;如果要求释放更多的核能,可以移出一定的吸收中子材料。这种能维持和控制核裂变,因而维持和控制核能……热能转换的装置,叫反应堆。
核能发电就是利用核燃料在核反应堆中进行可控自持链式裂变反应产生的热能进行发电的方式。核燃料通常指可裂变核素铀233、铀235和钚239或其混合物。核燃料在裂变反应后,发生所谓质量亏损,即反应中核燃料的一部分质量(m)转化为能量(E)。按爱因斯坦质能关系式 E=mc2(式中c为光速),很少的质量亏损能转化为巨大能量。据计算,一座百万千瓦的核电站,每年消耗铀235约25吨。而同功率的火电厂每年耗煤达6875万吨。
由于核能具有放射性,所以对核电站的安全防护要求格外严格,所花费投资也很大。从1954年首座核电站在前苏联建成后,直到1966年,由于核浓缩技术的发展,核能发电的成本在发达国家才低于火电成本,从而使核能发电真正迈入实用阶段。自然界存在的可裂变元素只有铀235,而它只占天然铀的%(其余均为铀238),但在核电站中可将一部分铀238转变为钚239,钍232(自然界中大量存在)转变为铀233,所以核燃料的储藏量能满足长期核能发电的需要。
除核裂变发电外,为最终解决人类的能源问题,科学家们正在研究热核聚变发电。核聚变能在瞬间释放巨大能量(如氢弹),1千克氘的热值相当于4千克铀235裂变所能释放的能量。而当前最需要解决的问题是如何实现核聚变反应的人工控制。世界各国对此都投入了巨大的人力、财力和物力。
2、核 能 发 电
核能发电的核心装置是核反应堆。核反应堆按引起裂变的中子能量分为热中子反应堆和快中子反应堆。
快中子是指裂变反应释放的中子。热中子则是快中子慢化后的中子。目前,大量运行的是热中子反应堆,其中需要慢化剂,通过它的原子核与快中子弹性碰撞将快中子慢化成热中子。热中子堆使用的燃料主要是天然铀(铀一235含量)和稍加浓缩铀(铀一235含量3%左右)。根据慢化剂、冷堆剂和燃料不同,热中子反应堆分为轻水堆(包括压水堆和沸水堆)、重水堆、石墨气冷堆和石墨水冷堆。目前已运行的核电站以轻水堆居多,我国己选定压水堆作为第一代核电站。
核反应堆的起动、停堆和功率控制依靠控制棒,它由强吸收中子能力的材料做成。为保证核反应堆安全,停堆用的安全棒也是由强吸收中子材料做成。
下面简要介绍压水堆和快中子堆核电站。
(1)压水堆
压水堆是指用高压水作冷却剂,堆中的水在高压下通过蒸发器将二次回路的水加热变成蒸汽的反应堆。这种反应堆慢化剂也是水,用2% ~ 3%的低浓缩铀作燃料,用传热效率较高的水作介质,因此反应堆体积小,造价低,技术上比较容易掌握。其原理流程如图1所示。
整个一次回路系统被称为核蒸汽供应系统,也称为核岛,它相当于常规火电厂的锅炉系统。由蒸汽驱动汽轮发电机组进行发电的二次回路系统,与常规的火电厂汽轮机发电机基本相同,称为常规岛。
(2)中子增殖堆一核燃料的增殖
热中子反应堆主要利用天然铀内的少量铀-235,以及在反应堆生成的少量钚-239.因此,热中子堆仅能利用天然铀中2%左右的铀。由快中子来产生和维持链式裂变反应的反应堆-快中子反应堆,有可能实现核燃料的增殖。
快中子堆以钚-239为裂变燃料,以铀-238为增殖原料(不裂变)。钚-239裂变反应应用的是快中子,而不是热中子。裂变产生的中子即是快中子,因此快中子堆中不需要慢化剂。用快中子轰击钚-239原子核产生裂变;一个钚-239原子核裂变放出的中子数平均值比一个铀-235核裂变放出的中子数多,因此钚-239裂变产生的中子数除维持反应堆的链式反应外,多余的中子被铀-238俘获后可产生新的钚-239,而且新生的钚-239比堆芯内消耗的钚-239还多,这样就实现了核燃料的增殖。
图1 压水堆原理流程
图2 快中子增殖核心电站原理流程
快中子增殖堆的结构以钚-239为核燃料组成堆芯,铀-238为增殖原料,安放在堆芯周围形成增殖层(再生区)。冷却剂用液态钠,以大大减少中子的吸收损失。快中子增殖核电站原理流程如图2所示。
1951年,美国按上述原理建成世界上第一座快中子增殖堆。到70年代末,快中子示范电站功率已达3万KW,开始进入实用阶段。目前,已建成商业规模的示范堆。快中子增殖堆理论上可利用全部铀资源,实际上由于各种损失,估计可利用铀资源60%以上,它被认为是最有前途的发电用反应堆。
(3)高温气冷堆
高温气冷堆是模块式球床高温气冷反应堆的简称,是我国完全自主研发、拥有独立知识产权的先进反应堆,已经被国际原子能机构推荐为第四代反应堆候选堆型之一。
高温气冷堆用氦气做冷却剂,直接驱动透平发电。高温可以提高能量转换的效率。高温气冷堆的最大优势在于其内在固有安全性。在满功率运行条件下,即使停止输送冷却剂和提升控制棒也不会产生不良后果。
1986年,清华核研院承担的高温气冷堆研究被列入国家高技术“863”计划。1992年3月,国务院批复同意在核研院建造我国第一座10兆瓦高温气冷实验堆。1995年6月;10兆瓦高温气冷实验堆在核研院动工兴建,2000年12月建成达到临界,2003年1月实现满功率并网发电。高温气冷堆是安全性好、用途广泛的先进反应堆,国际核能专家认为,未来最有发展前景的新核电厂堆型是高温气冷堆,高温气冷堆有可能在国际核电界引起一场革命。模块式球床高温气冷堆是最有希望成为“第4代先进核能系统”的技术之一。10兆瓦高温气冷堆的建造成功,使我国成为世界上为数很少的几个掌握了高温气冷堆技术的国家之一,为今后实现高温气冷堆产业化和国产化打下了良好的基础
图1 10MW高温气冷实验堆的总体结构
高温气冷堆采用优异的包覆颗粒燃料是获得其良好安全性的基础。铀燃料被分成为许多小的燃料颗粒,每个颗粒外包覆了一
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。
赞一下
添加书签加入书架